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Abstract
We present the results of an exact analysis of several model free energy landscapes of a protein
to clarify the notion of the transition state and the physical meaning of the φ values determined
in protein engineering experiments. We argue that a proper search strategy for the transition
state in more realistic models should involve identification of a common part of various
methods. Two of the models considered involve explicit conformations instead of just points on
the free energy axis. These models are minimalistic as they are endowed only with five or 36
states to enumerate folding paths and to identify the transition state easily. Even though they
display much of the two-state behavior, the φ values are found not to correspond to the
conformation of the transition state.

1. Introduction

Folding kinetics of simple globular proteins is often found
to display a two-state behavior with a single characteristic
timescale [1–6]. This behavior signifies that each individual
protein molecule in a solution appears to be either in a folded
(N, for native) or denatured (D) state and not in between. Thus
folding can be viewed as a chemical reaction that proceeds
between D and N along some reaction coordinate on which
there is an essentially unpopulated bottleneck—the transition
state, ‡. Another perspective on folding is to think of it as a
nucleation process [7, 8] in a first order phase transition which
requires formation of a critical sized ‘droplet’ to succeed in
transforming the unfolded state into the folded state. This
‘droplet’, or a folding nucleus as it is known, is equivalent
to the transition state in the chemical reaction picture. Both
pictures allow for emergence of different pathways with
distinct transition states. An established experimental way to
probe them involves the substitution of amino acids in different
positions with other amino acids and monitoring the resulting
changes in the kinetics [9–11, 2, 12, 13, 3–5]. The changes
in the kinetic folding rates normalized to the corresponding
changes in the protein stability define the so called folding φ-
values. In simple situations, the values of φs range between
zero and one. A value that is close to one suggests a
nearly native-like structure around the site of substitution in
the transition state. Thus a set of the φ values provides an
approximate description of the transition state conformation(s).

Clearly, any protein can take an astronomical number of
conformations and yet it often behaves as it was a two-state

system. This indicates that, in such situations, there is a huge
number of relaxation modes with timescales that are too short
to be measured in standard experiments and one exponential
mode that is long lasting because it involves climbing the
transition state. How can one determine this state theoretically?

Many ideas have been put forward to tackle this problem.
One of them proposes that transition states are all edge
states [14, 15]. A definition of the edge state is that when
one takes it as a starting point for a temporal evolution then
one finds the system reaching the N and D states with nearly
equal probabilities. Another prescription is that one should
find the free energy, G(Q) as a function of the fraction, Q,
of the established native contacts and identify all states which
correspond to the maximum in G(Q) [16]. Still another [17]
claims that the transition state is an eigenvector of a kinetic
matrix that governs relaxation processes in the system. Daggett
and collaborators [18, 19] seek transition states by performing
molecular dynamics of unfolding at high temperature and then
by identifying stages with rapid structural transformations.
In [20] and [21] the prescription involves characterization of
conformations by sets of local Qi values, where Qi is the
fraction of established native bonds that are linked to the i th
amino acid, and then finding the best match to the experimental
φ-values. And so on.

Since the subject of transition state in folding kinetics is
enshrouded in confusion it seems pertinent to consider simple
and exactly solvable models that would benchmark various
theoretical approaches. One of such models has been recently
proposed and studied by Chang et al [22]. This model is a
variant of a system considered by Munoz, Eaton, and their
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collaborators [23–25] and it embodies the topology of the
12-amino-acid β-hairpin. The model is discrete and it is
endowed with an explicit free energy landscape. The variant
studied by Chang et al has been formulated in terms of Ising
spins taking values 0 and 1, as discussed in section 2. The
value of 1 signifies native-like placement of a bond between
successive amino acids and 0—a non-native like placement.
Non-zero values of multiple spin products correspond to a
native-like establishment of a fragment of the hairpin, together
with the establishment of the contacts within it. The model
is endowed with the spin-flip kinetics that is described by a
master equation for the probability density for various possible
conformations. Enumeration of all directed paths in the free
energy landscape—a procedure that cannot be accomplished
in any realistic system—leads to an identification of two
degenerate conformations that are the transition states for
the system. Essentially all of the other proposed theoretical
prescriptions that we have tested, are consistent with this
identification. However, they would also select, incorrectly,
several other conformations as transition states even though
their free energies were higher. Interestingly, the sets of
putative transition states depended on the prescription used
but there remained a common part that agreed with the
exact enumeration result. In other words, these approximate
approaches contain ‘grains of truth’ and the lesson learned is
that a successful search strategy should involve seeking for the
common ‘grain’.

In this paper, we consider the same issues but in a context
of three other simple, discrete, and exactly solvable models
with the kinetics described by the master equation. The first of
these models has been introduced by Merlo et al [26] and we
reconsider it in section 3. The model involves just four states:
N, D, and two connecting states A and B of which A is the
transition state. The transition rates between these four states
are defined in terms of the free energy differences, but no actual
conformational changes are considered. We comment on the
relevance of the eigenvectors of the kinetic matrix and show
that the eigenvector corresponding to the longest relaxation
time identifies state A as the transition state only after the
contributions of the D and N states are discarded.

The other two models, corresponding to five and 36
conformations on the square lattice, are studied in sections 4
and 5 respectively. These minimalist models go one step
further toward realism, compared to the other models discussed
here. First of all, the conformations in these models correspond
to specific shapes of a polymer on the lattice (as opposed to
the states being defined merely in terms of which segments are
native-like, or not having a specific geometry as in the case of
the model proposed by Merlo et al). This means, in particular,
that the kinetic moves correspond to well defined local
adjustments in the conformations. Secondly, the free energies
of conformations are not declared. Instead, the energies of
the conformation are derived from contact potentials and the
entropy terms are evaluated from the equilibrium probability
density matrix. The five-state model is the simplest explicit-
conformation analog of the model proposed by Merlo et al [26]
whereas the 36-state model gives one a flavor of how should
one deal with more convincing models of proteins. In the 36-
state model the transition from the D to N state is generally

Figure 1. Bottom: the model β-hairpin system studied in [22] and in
this paper. The stars denote amino acids. The spins Sn correspond to
the peptide bonds between the successive amino acids. In non-native
conformations only parts of the native structure are established. The
dotted lines indicate presence of a hydrogen bond. The dashed lines
correspond to hydrophobic bonds between hydrophobic amino acids.
Top: example of a non-native conformation in the β-hairpin system.
The solid line indicates established native-like backbone. The thinner
dotted lines show examples of fragments which are not established in
the native way.

downhill in the free energy and yet certain states act as local
free-energy maxima. The lowest of these maxima is taken as
the transition state.

The two minimalist models with explicit conformations
are found to display many aspects of the two-state behavior but
there are also deviations which may be related to an insufficient
size and/or artificiality of the systems. In particular, the
kinetically derived φ-values do not reflect the transition state
conformation in an adequate way. In addition, the φ-values
are not found to relate to the set of the local Qi values. The
conclusion is then that one should explore these issues further
in larger-sized explicit-conformation models. In meantime,
when dealing with more realistic models of proteins, one
should use a combination of available methods when searching
for transition states.

2. The Eaton-like spin model

The native state of the system we study is illustrated in the
bottom panel of figure 1. The system can be described in
terms of effective free energy levels which take into account
their underlying microscopic degeneracies through an effective
entropy term. The free energy levels are defined in terms of 11
peptide bonds which are either placed in the native fashion or
not. This binary character of the bond placement allows for
an Ising-like modeling and we adopt spin variables Sn which
take values 1 or 0 correspondingly. An example of a non-native
conformation is shown in figure 2. A part of it, near the turn
in the hairpin, is set in a native fashion. All we know about
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Figure 2. A triangular representation of the 67-level system. The
explanations are in the main text of the paper. The values of the free
energies and of the contact numbers shown on the right of the bottom
panel refer only to the states along the optimal path and not to all
states in each row.

the remaining parts in the model is that they are not native-
like. There are many ways to have a non-native shape in the
remaining segments, one of them is shown at the top of figure 2,
and this richness is accounted for by introducing an entropy
term which comes with a non-zero value of (1 − Sn).

The free energies per mole can be written as

G = −J
∑

l<m

�lm

m∏

n=l

Sn + T �Sconf

∑

n=1

Sn . (1)

A non-zero value of the product Sl Sl+1 . . . Sm implies that all
peptide bonds between l and m are set in the native fashion
which allows for the establishment of native interactions in
the cluster between the bonds l and m. These interactions
are either hydrophobic or due to establishment of the hydrogen
bonds or both. For simplicity, we assume that the strength of
the interactions, J , are the same in both cases and equal to
1000 K whereas the conformational entropy per spin, �Sconf,
is taken to be 2.14 R, where R is the gas constant—in the
equation above, T denotes the temperature. When writing the

entropy term, we omit the constant term (the unity in (1 − Sn).
We choose �lm to be 2 for (l, m) = (1, 11) and (3, 9), 1 for
(l, m) = (2, 10), (4, 8), (5, 7) and (1, 9), and 0 otherwise.
Note that the placement of the contacts brakes the symmetry
between the upper and lower branches of the hairpin. Let
the free energy in conformation i be denoted by Gi . The
equilibrium probability to occupy this conformation, Pi is then
given by

Peq
i = e−Gi /RT

∑
i e−Gi /RT

. (2)

The kinetics of the model proteins considered here are
defined through the master equation

dP(t)

dt
= −M P(t), (3)

where P(t) is a vector whose components, Pn(t), are
probabilities of staying in the nth state at time t . The matrix M
consists of the following elements: Mnm = −wnm for n �= m
and Mnn = ∑

m �=n wmn . Here, wnm are the transition rates for
going from state m to n.

The analytical solution to the master equation has the
following form:

P(t) =
∑

λ

cλYλe−λt , (4)

where λ are the eigenvalues of the matrix M and Yλ are
the corresponding eigenvectors. The factors cλ depend on
the initial conditions. The smallest non-zero eigenvalue
corresponds to the longest lasting relaxation process whereas
the zero eigenvalue corresponds to the equilibrium distribution
of the probability.

The matrix M describes relaxation which involves a T -
controlled balance of folding and unfolding. In order to study
the latter processes, we consider matrices Mf and Mu for
folding and unfolding respectively [22]. In the Mf matrix,
the N-state is considered to be a probability sink, i.e. the
transition rates corresponding to leaving the N-state are set to
zero (the first column in the matrix M is set equal to zero).
Likewise, in the Mu matrix, the D-state acts as the probability
sink (the last column in the M matrix is set equal to zero).
The corresponding two smallest non-zero kinetic rates will be
denoted by as kf and ku. The smallest relaxation rate will be
denoted by k. In the two-state model, k = kf + ku [2].

The folding φ-value at site i can be studied by making
a small adjustment in J in contacts that involve amino acid
i (which thus belongs to two consecutive bonds or spins) and
then determining the resulting change, δkf, in kf. The definition
is

φ = δ ln (kf)

δ ln (kf/ku)
= δkf

kf

/ (
δkf

kf
− δku

ku

)
. (5)

It has been demonstrated in [22] that the model just
outlined has all attributes of a two-level system near the folding
temperature and all other folding (unfolding, relaxation) modes
than the one associated with kf (ku, k) last too short to matter
or are associated with equilibrium.

The model comes with two variants. The first variant
considers all 211 spin states that are present in the system. The
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Figure 3. The left panel: the free energy landscape in a
three-dimensional representation. The lighter color shows states
traveled on the optimal paths. The right panel: a side view of the
landscape with a half of the landscape removed to show the optimal
paths against the background of other path possibilities.

second variant considers only a subset of 67 states defined by
the condition that in a state described by a sequence of 0’s and
1’s (say 00011111000) no string of 1’s is split by a 0. It turns
out that this so called single sequence approximation yields all
equilibrium and kinetic properties which are very close to the
full space description. So in this brief summary, we confine the
discussion to the 67-state system.

The free energy landscape corresponding to the 67-state
system at T = 300 K is shown in figure 2. The single circle
at the bottom represents the unfolded state (state 67). The
remaining 66 states form a triangle. The row of circles at
the base of the triangle represents states with one non-zero
spin. The second row represents states with two contiguous
non-zero spins, the third—with three, and so on. The top
circle represents the single native state (state 1). The kinetic
moves from the unfolded state (the bottom state) can connect
to any of the single spin states (last but one row) and vice
versa. In all other cases, the allowed kinetic moves are only
along the diagonal directions on the triangle, as shown by the
dotted lines around the 58th state. There are at most four
possible moves because the single sequence condition allows
for changes occurring exclusively at the interface(s) between
the spin ones and the spin zeros.

The top panel of figure 2 shows the local free energy
minima, in double circles. The bottom panel shows the
states that are traveled on optimal paths (the decorated circles)
including the two transitions states (25 and 33; black circles)
which have the same free energies. One of the transition
states corresponds to a conformation shown in the top panel of
figure 2 and the other to its mirror image. The free energies on
the optimal paths are listed on the right of the bottom panel.
A three-dimensional rendition of the free energy landscape
is shown in figure 3. This figure indicates clearly that the
optimal paths go through up-and-down states which, however,
are much lower in free energy than the remaining regions of
the configuration space. The system is quite unlikely to travel
into these remaining regions at 300 K.

Among the results obtained by Chang et al [22] for this
system, we highlight the following.

(1) The reaction coordinate is a list of states that are traveled
on the optimal paths: 67, followed by (any of 45, 51, 56),
then (44 or 50), 43, (35 or 42), 34, (25 or 33), 24, (14 or
23), (3 or 13), 2, and finally 1.

(2) There are five edge states, 25, 33 and also 5, 16, 40, and
39. They are shown connected by a thick line in the top
panel of figure 3.

(3) The free energy G(Q) has a maximum at Q = 1
4 . In

addition to states 25 and 33, there are five other states that
correspond to this value of Q. These are 4, 15, 31, 32, and
34. They form a letter V on the triangular representation
of the states in figure 3. These states are connected by the
exclamation marks in the figure.

(4) The φ-values are largest for the amino acids at and near
the turn in the hairpin and are zero near the terminals.

(5) There are seven states, all corresponding to Q = 1
4 and

thus listed in item (3), that are closest to the kinetically
derived φ-values.

(6) Time evolution of the density matrix is smooth, i.e. rapid
changes in structural measures that may occur in single
trajectories (as in a Monte Carlo simulation) wash out on
averaging over many trajectories.

The fourth point above suggests that the φ-values do
indeed provide a meaningful characterization of the average
conformation corresponding to the transition states 25 and 33.
The remaining points, however, suggest that the theoretical
approaches to identify the transition states that have been
proposed so far are correct only partially. In particular, points 3
and 5 suggest that among the putative transition states there is
one state, 34, which is a local energy minimum which cannot
be a true transition state by definition. Nevertheless, it is clear
that taking these various approaches together and identifying
the common finding does agree with the correct selection of
the transition states.

There is a possibility, however, that the 67-state model,
though two-state, somehow is not representative of proteins
so it is relevant to consider other models and benchmark the
various approaches again. We now consider three other simple
models.

3. The four-state model

We now consider the four-state model proposed by Merlo
et al [26]. The allowed transitions between the states are
represented schematically in figure 4. Thus one can get from
state D to state N either through the state B or through state A,
but not directly. Therefore, there are only two folding paths in
this system. A is the transition state if its free energy is lower
than that of state B.

The transition rates in this model are defined by

wnm = 1

τ0
(1 + e(Gn−Gm)/RT ))−1, (6)

where Gn denotes the free energy in state n. The resulting
M matrix has four eigenvalues which are given by λ = 0,

4
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Figure 4. The 4-state model of Merlo et al [26]. The lines indicate
the allowed kinetic transitions.

1 − q, 1 + q , and 2, where

q = [1 − e(GN−GA−GB)/RT ]
× [(1 + e−GA/RT )(1 + e−GB/RT )

× (1 + e(GN−GA)/RT )(1 + e(GN−GB)/RT )]− 1
2 (7)

and −1 < q < 1. We require that state N must be of
much lower free energy than the remaining states and that there
must be a barrier to go to state D. Under these conditions, the
Boltzmann factors b1 = e(GN−GA−GB)/R , b2 = e(GN−GA)/R ,
b3 = e(GN−GB)/R are negligible and q ≈ [(1+h1)(1+h2)]−1/2,
where h1 = e(−GA/R) and h2 = e(−GB/R). The system is
endowed with the two-state behavior because the eigenvalues
are well separated. The second eigenvalue is small and its
inverse yields the longest relaxation time. In the following, we
choose GN/R = −800, GA/R = 100, GB/R = 200 K, and
G D = 0 which leads to a specific heat maximum occurring at
300 K. For this choice and for T = 300 K, we have h1 = 0.72,
h2 = 0.51 and the bi factors are indeed negligible (b1, b2, and
b3 are 0.03, 0.05, and 0.04 respectively).

Merlo et al [26, 17] identify relaxation with folding
and have not determined the eigenvalues of the Mf and Mu

matrices. Deriving compact analytic expressions for these
other matrices has turned out to be difficult and we have
opted for a numerical solution. For that purpose, we take
the just stated values of the free energies. The solutions
for the relaxation, folding and unfolding rates are shown in
figure 5. We observe that below 400 K, k ≈ kf + ku which
is characteristic of two-level systems. Above this temperature,
the bi factors cease to be negligible. At very low temperatures,
ku ≈ 0 and kf ≈ k. At very high temperatures, kf approaches
ku whereas k clearly separates from kf + ku.

For the values of Gn that we consider, the transition state is
clearly state A. Dill and collaborators [26, 17] have suggested
that the transition state can be determined by identifying the
largest components of the eigenvector corresponding to the
longest lasting relaxation process in the system. The four
components of the eigenvector corresponding to the longest
finite relaxation time, 1/k, are shown in figure 6 as a function
of T . At each T , the weight of the state N dominates, followed
by that of state D. At T = 300, the weights of states D, A,
B, and N are 0.53, 0.16, 0.12, and −0.82 respectively. The
relatively large contribution of state D is due to the fact that

Figure 5. Logarithms of folding, unfolding and relaxation rates as
functions of T in the 4-state model.

Figure 6. Components of the eigenvector corresponding to the
longest finite relaxation time 1/k as a functions of T .

state D acts as a local energy minimum in this model. Thus,
in terms of the absolute values, the transition state A comes
as a third in importance. This fact indicates that the method
may distinguish the transition state provided one discards the
contributions of the D and N states in the eigenvector. In larger
systems, all local free energy minima also need to be discarded
in the eigenvector to get to a transition state in this way.

Another suggested way to identify the transition state
is by determining the so called edge states for which the
probabilities to flow to the N- and D-states are nearly the
same [14, 15]. One can determine such states by making
both D and N to be the probability sinks. In the four-state
model, neither state A nor B is, strictly speaking, an edge state
because of a too small number of states available. Figure 7,
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Figure 7. Probability of reaching state N, when starting from states
A and B at T = 300 K as a function of time.

corresponding to T = 300 K, shows that when one starts
in state A, then the probability to reach state N is close to
0.62. On the other hand, when one starts in state B this
probability becomes close to 0.59, suggesting, quite wrongly,
that B is more likely to be the transition state of this system
than A because the corresponding asymptotic value is closer to
0.5. These results have been obtained by evolving the density
matrix with the use of matrix M in which both N and D states
act as probability sinks [22].

4. The five-state model

We now consider models with explicit conformations that
come with well defined energies and not free energies. In
the transition rates wnm differences in free energies are now
replaced by differences in energies.

The first of these models involves four beads on the square
lattice. This system has only five conformations. It comprises
four beads placed on the square lattice. The chain can be in
five different conformations that are shown in figure 8. The
kinetic moves involve turning the head or tail beads to an
available lattice site. The conformations are linked kinetically
as indicated in figure 8. In order to introduce some complexity
into the body of four beads, we endow the system with three
different couplings. The I -coupling acts between the terminal
beads whenever they become neighbors on the lattice [27]. In
this system this happens only in state N. In order to remove
the degeneracy between the remaining four conformations, we
introduce couplings J1 and J2 which link centers of the bonds
(like a backbone–backbone hydrogen bond link in proteins).
These couplings become active when the nearby bonds form a
kink.

The Hamiltonian is then given by

H = −J1�123 − J2�234 − I�14 (8)

Figure 8. The five possible conformations in the five-state
(or four-bead) model. The arrows indicate the allowed transitions.
The energy couplings that are operational in each conformation are
indicated by the dotted lines.

where �kl is 1 when bead k is a lattice neighbor of bead
l and 0 otherwise; �klm is 1 if the consecutive beads k, l,
and m make a 90◦ kink and 0 otherwise. Our choice of the
parameters is as follows: J1/R = −300 K, J2/R = −600 K,
and I/R = 1200 K. The linking I coupling is attractive. We
make the Jl couplings repulsive to introduce some resistance to
kink formation. In this way, a barrier arises when one starts in
state D (the straight line conformation) and attempts to make
a kinetic move. Once the barrier is crossed, the system favors
establishing the strong I -bond which provides stability to state
N. This choice of values of these parameters yields the specific
heat with a broad maximum at 200 K. The folding temperature,
at which the equilibrium occupancy of the native state is 1

2 , is
450 K. The system becomes two-state at temperatures below
500 K and the kinetic rates have plots similar to those shown
in figure 5.

The free energy of a conformation is determined by adding
the T RPeq

i ln (Peq
i ) term to the energy of the i th conformation,

where Peq
i is the normalized Boltzmann factor describing the

equilibrium probability of occupation of this conformation.
The optimal free-energy trajectories that link D with N go
through state A which makes A the transition state of this
system. Coupling J1 is operational in this state.

The eigenvector corresponding to the smallest relaxation
eigenvalue of the M matrix has features which are similar
to those of the four-state system considered in the previous
section. At RT = 325 K, the weights of the N, D, A, B,
and C states are 0.65, −0.76, 0.07, 0.03, and 0.01 respectively.
The dominating components are those which correspond to
states N and D. However, the third important contribution is
again associated with the transition state A like in the four-state
model discussed in the previous section.

No state is a precise edge state in this system. When
evolving the system from state A, B, and C, the asymptotic

6
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Figure 9. The φ values determined kinetically in the five-state
model.

probabilities of arriving at state N are 0.52, 0.51, and 0.53
respectively. Thus all of these states are nearly edge-like (state
B is the closest to the 0.5 criterion) and yet it is only the lowest
free energy state of them is the true transition state.

We now consider the φ-value analysis for this system.
A mutation at the i th bead is accomplished by making a 5%
adjustment in all couplings that involve bead i . Each bead is
linked to two possible couplings, but the pairs are all different.
The resulting φ-values at T = 325 K are shown in figure 9.
The maximal values of φ are found to be at the center beads.
The terminal φ-values are negative. This could be due to the
strong stabilization of the native state by the I bond.

Following references [20, 21], we now determine the local
Qi values. The local Qi value for the i th bead in state S is
defined as

Qi (S) = ni (S)

ni (N)
(9)

where ni (N) is the number of bonds that bead i participates
in when in the native state, and ni (S) is the similarly defined
number of bonds in state S. For instance, the transition state A
makes the coupling J1 operational and this coupling involves
three beads. The resulting sets of the Qi values are { 1

2 , 1
2 , 1

2 , 0},
{0, 1

2 ,
1
2 , 1

2 }, { 1
2 , 1, 1, 1

2 }, {0, 0, 0, 0}, and {1, 1, 1, 1} for states
A, B, C, D, and N respectively. In state C, the Qi s are bigger
for the center beads and lower at the terminal beads. States A
and B have asymmetric sets of the Qi values but taken together
they make the terminals to have lower Qi than at the center. So
states A, B, and C, when combined, would be consistent with
the kinetically derived φ-values but it is only conformation
A that is the transition state. This seems to suggest that the
approach base on the local Qi values may work for more
realistic models of proteins but it fails for the five-state toy
model.

Figure 10. On the left: the native conformation in the 36-state
model. The dotted lines indicate the energy couplings that are
operational in the native conformation. On the right: Two
conformations with one operational non-native contact each. These
contacts are indicated by the dotted lines.

5. The 36-state model

In order to obtain a still richer behavior we now consider a six-
bead model on the square lattice with one I -like coupling and
four J -like couplings. The Hamiltonian is given by

H = −J1�123 − J2�234 − J3�345

− J4�456 − I1�16 − I2�25, (10)

where the stabilizing bead–bead interactions arise in pairs 1–6
and 2–5. The native conformation and two high energy one-
kink conformations are shown in figure 10. The latter involve
non-native couplings J1 or J4 (so the system is not Go-model-
like). These non-native bonds are essential in the model since
they allow for introduction of energy barrier for trajectories
connecting the N and D states. We choose J1/R = 300 K,
J2/R = 100 K, J3/R = 100 K, J4/R = 800 K, I1/R =
1600 K and I2/R = 100 K to ensure that any path from N
to D must cross an energetic barrier. Unlike the previously
considered system, all couplings in this model are attractive.
With these couplings, the specific heat has a maximum around
200 K and the folding temperature is close to 250 K. The φ-
values are then determined at T = 225 K. The kinetic rates
of the 36-state model are shown in figure 11. This model
is seen to have the two-state behavior (k = kf + ku) below
300 K. At temperatures larger than 230 K the unfolding begins
to dominate over folding (ku > kf).

This system also displays (figure 12) chevron-like
behavior when the kinetic rates are plotted (at 225 K) as a
function of the concentration, x of the denaturant. One can
mimic effects of the denaturant by adjusting all coupling in
proportion to x [22]. Specifically, Ji (x) = Ji (1 − x), where
i = 1, . . . , 4 and Ii (x) = Ii (1 − x) for i = 1, 2.

There are many directed pathways in the free-energy space
connecting the denaturated state with the native one. Some
of them involve six kinetic steps and they correspond to the
shortest paths as measured by the number of moves to make.
The paths are shown in figure 13 together with the relevant
part of the free-energy landscape. The paths correspond to
a mostly downhill movement but three are several local free-
energy maxima denoted as ‘a’, ‘b’, and ‘c’ (see also figure 14).
The three states have a common L-like shape formed by the
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Figure 11. The logarithms of folding, unfolding and relaxation rates
as a functions of T in the 36-state model.

Figure 12. The logarithms of folding, unfolding and relaxation rates
as a functions of the ‘concentration of the denaturant’, x , in the
36-state model.

first four beads and getting to them involves breaking the same
strong bond J1. The smallest free-energy mountain to climb on
going from D to N is the ‘c’ state so ‘c’ is the transition state.
However, there are certain subtleties: on going down from D
to N, the smallest single step increase in the free energy is
associated with climbing ‘a’, i.e. to the highest local maximum
state. Nevertheless the optimal path should be the best both
for folding and for unfolding and the smallest effort on moving
from N do D involves taking state ‘c’ at the climbing step.

The kinetically determined φ-values are shown in
figure 15 and the values of the local parameters Qi for states
‘a’ through ‘c’ are listed in figure 14. None of these sets of
Qi is consistent with the φ-values. For instance, for state ‘c’

Figure 13. Some of the best folding paths in the 36-state model. The
arrows indicate possible kinetic transitions and the optimal path
corresponds to the thicker arrows.

(This figure is in colour only in the electronic version)

a

b

c

Figure 14. The local free-energy maxima states in the 36-state
model. The values of Qi are indicated at each bead. Conformation c
corresponds to the transition state.

the fourth and fifth beads should have the φ-values as large as
for the second and third beads if judged by the values of Qi .
Averaging the Qi s over the three states would agree with the φ

values better but there is no reason to make the average.
One cannot turn the J1 and J4 bonds off in the model,

because they play the key role here. However, if we reduced
the couplings I2, J2 and J3 to zero, the three local maxima
states would have no native bonds at all and the corresponding
Qi s would be all equal to zero. In this limit, however, the φ-
values look similar to those shown in figure 15 so the Qi -based
approach [20, 21] becomes invalid in this system.

In conclusion, the small explicit-conformation models
considered here indicate existence of problems with the
determination of the transition state by means other than
enumeration of the optimal paths. These problems may just
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Figure 15. The solid lines connect the kinetically determined
φ-values in the 36-state model.

be related to the remoteness of such small-sized systems from
physics of real proteins. Theoretical understanding these issues
requires considering less artificial and, in particular, larger
systems. Perhaps the next step to do is to consider the twelve-
bead model on the square lattice that comes with 15 037
conformations and yet can be solved exactly [28].
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